Abstract
Various factors, both internal and external, lead to the development of caries. Today, the study of molecular genetic predictors of disease, including dental caries, has become widespread. We searched for literature sources in domestic and foreign scientometric databases in order to study the current state of the molecular genetic mechanisms of dental caries. Studies of the inheritance of dental caries in children using the twin method have clearly shown the key role of genetic markers in the development of the disease. Predisposition or resistance to caries may be the result of one or more genotypes, phenotypes and environmental influences. Tooth enamel is one of the most mineralized tissues in vertebrates, which is characterized by high strength and high compactness. Enamel formation is the result of a series of ectomesenchymal interactions. Enamel defects occur as a result of disturbances in the formation of teeth and can lead to changes in the formation of enamel or calcification of the organic matrix. Particular attention should be paid to enamel defects that occur as a result of disorders in the formation of teeth and can lead to changes in the formation of enamel or calcification of the organic matrix. Insufficiently mineralized or irregular enamel structure can lead to caries. Differential genetic factors on different anatomical structures of teeth, different surfaces of deciduous and permanent teeth also contribute to the development of carious lesions. In addition to defective mineralization, genotypic variations also make enamel more vulnerable. Numerous studies have established the role of inheritance of dental caries and identified the main genes that ensure the resistance of enamel to cariogenic factors, the completeness of the composition of saliva and the rate of salivation.
Keywords: caries, molecular genetic determinants, amelogenesis genes, dentinogenesis genes.
References
World Health Organization. Oral health surveys: basic methods. 5th ed. Geneva: WHO; 2013. 132 p. Available from: https://is.gd/AwlA6n
Tanner AC, Kressirer CA, Faller LL. Understanding caries from the oral microbiome perspective. J Calif Dent Assoc. 2016;44(7):437–46. PMID: 27514155.
Udina IG, Gulenko OV. Molekuliarno-heneticheskiie mekhanizmy razvitiia kariiesa [Molecular-genetic mechanisms of caries development]. Genetika. 2018;54(4):426–34. DOI: 10.1134/S1022795418040154. [In Russian].
Anitha C, Konde S, Raj NS, Kumar NC, Peethamber P. Dermatoglyphics: a genetic marker of early childhood caries. J Indian Soc Pedod Prev Dent. 2014;32(3):220–4. DOI: 10.4103/0970-4388.135828. PMID: 25001441.
Shaffer JR, Wang X, McNeil DW, Weyant RJ, Crout R, Marazita ML. Genetic sus-ceptibility to dental caries diers between the sexes: a family-based study. Caries Res. 2015;49(2):133–40. DOI: 10.1159/000369103. PMID: 25612913. PMCID: PMC4449725.
Shakovets NV, Terekhova TM. Zakhvoriuvanist na kariies zubiv u ditei rannoho viku ta yii vzaiemozviazok z riznymy faktoramy ryzyku [Early childhood caries in infants and toddlers and its relationship with different risk factors]. Profilaktychna ta dytiacha stomatolohiia [Preventive and Pediatric Dentistry]. 2015;1(12):38–42. Available from: http://nbuv.gov.ua/UJRN/ptdc_2015_1_11 [in Ukrainian].
Yakubova II, Kuzmina VA. Rannii dytiachyi kariies. Stan problemy v Ukraini [Early childhood caries. The state of problem in Ukraine]. Sovremennaia stomatolohiia [Modern Dentistry]. 2017;1(85):48–54. Available from: http://nbuv.gov.ua/UJRN/ss_2017_1_13 [in Ukrainian].
Skulska CV, Shnaider SA, Pyndus TO. Porivnialna otsinka efektyvnosti vykorystannia zasobiv pervynnoi profilaktyky kariiesu postiinykh zubiv u ditei shkilnoho viku [Comparative evaluation of the effectiveness of using the caries primary prevention of school-aged children’s permanent teeth]. Wschodnioeuropejskie Czasopismo Naukowe. Medytsynskye nauky [East European Scientific Journal. Medical Sciences]. 2019;12(52):58–62. Available from: https://is.gd/dIuXOP [in Ukrainian].
Wendell S, Wang X, Brown M, Cooper ME, DeSensi RS, Weyant RJ, et al. Taste genes associated with dental caries. J Dent Res. 2010;89(11):1198–202. DOI: 10.1177/0022034510381502. PMID: 20858777. PMCID: PMC2954250.
Chuikin SV, Egorova EG, Akateva GG, Averyanov SV. Osobennosti profilaktiki kariesa zubov u detej v krupnom promyshlennom gorode [Features of the prevention of dental caries in children in a large industrial city]. Stomatologiya detskogo vozrasta i profilaktika [Pediatric Dentistry and Prevention]. 2011;10(3(38)):41–5 [in Russian].
Bretz WA, Corby PM, Melo MR, Coelho MQ, Costa SM, Robinson M, et al. Herit-ability estimates for dental caries and sucrose sweetness preference. Arch Oral Biol. 2006;51(12):1156–60. DOI: 10.1016/j.archoralbio.2006.06.003. PMID: 16934741.
Wang X, Shaffer JR, Weyant RJ, Cuenco KT, DeSensi RS, Crout R, et al. Genes and their effects on dental caries may differ between primary and permanent dentitions. Car-ies Res. 2010;44(3):277–84. DOI: 10.1159/000314676. PMID: 20516689. PMCID: PMC2919434.
Gustafsson BE, Quensel CE, Lanke LS, Lundqvist C, Grahnen H, Bonow BE, Krasse B. The Vipeholm dental caries study: the effect of different levels of carbohydrate in-take on caries activity in 436 individuals observed for five years. Acta Odontol Scand. 1954;11(3–4):232–64. DOI: 10.3109/00016355308993925. PMID: 13196991.
Black GV. Extracts from the last century. Susceptibility and immunity by dental car-ies by G.V. Black. Br Dent J. 1981;151(1):10. DOI: 10.1038/sj.bdj.4804617. PMID: 7018524.
Oliviera FV, Dionisio ThJ, Neves LT, Machado MA, Santos CF, Oliveira TM. Ame-logenin gene influence on enamel defects of cleft lip and palate patients. Braz Oral Res. (São Paulo). 2014;28:S1806-83242014000100245. PMID: 25166767. DOI: 10.1590/1807-3107BOR-2014.vol28.0035.
Patir A, Seymen F, Yildirim M, Deeley K, Cooper ME, Marazita ML, Vieira AR. Enamel formation genes are associated with high caries experience in Turkish children. Caries Res. 2008;42(5):394–400. DOI: 10.1159/000154785. PMID: 18781068. PMCID: PMC2820320.
Rauth RJ, Potter KS, Ngan AY, Saad DM, Mehr R, Luong VQ, et al. Dental enam-el: genes define biomechanics. J Calif Dent Assoc. 2009;37(12):863–8. PMID: 20066874. PMCID: PMC2825347.
Fukumoto S, Kiba T, Hall B, Iehara N, Nakamura T, Longenecker G, et al. Amelo-blastin is a cell adhesion molecule required for maintaining the differentiation state of amelo-blasts. J Cell Biol. 2004;167(5):973–83. DOI: 10.1083/jcb.200409077. PMID: 15583034. PMCID: PMC2172447.
Luo W, Wen X, Wang HJ, Macdougall M, Snead M, Paine M. In vivo over expres-sion of tuftelin in the enamel organic matrix. Cells Tissues Organs. 2004;177:212–20. DOI: 10.1159/000080134.
Shimizu T, Ho B, Deeley K, Briseño-Ruiz J, Faraco IM Jr, Schupack BI, et al. Enamel formation genes influence enamel microhardness before and after cariogenic chal-lenge. PLoS ONE. 2012;7(9):e45022. DOI: 10.1371/journal.pone.0045022. PMID: 23028741. PMCID: PMC3454391.
Lu Y, Papagerakis P, Yamakoshi Y, Hu JC, Bartlett JD, Simmer JP. Functions of KLK4 and MMP-20 in dental enamel formation. Biol Chem. 2008;389(6):695–700. DOI: 10.1515/BC.2008.080. PMID: 18627287. PMCID: PMC2688471.
Zeng Z, Shaffer JR, Wang X, Feingold E, Weeks DE, Lee M, et al. Genome-wide association studies of pit-and-fissure and smooth-surface caries in permanent dentition. J Dent Res. 2013;92(5):432–7. DOI: 10.1177/0022034513481976. PMID: 23470693. PMCID: PMC3627505.
Cho ES, Kim K-J, Lee KE, Lee EJ, Yun CY, Lee MJ, et al. Alteration of conserved alternative splicing in AMELX causes enamel defects. J Dent Res. 2014;93(10):980–7. DOI: 10.1177/0022034514547272. PMID: 25117480. PMCID: PMC4293710.
Gibson CW, Collier PM, Yuan ZA, Chen E, Adeleke-Stainback P, Lim J, Rosen-bloom J. Regulation of amelogenin gene expression. Ciba Found Symp. 1997;205:187–97; discussion 197–9. DOI: 10.1002/9780470515303.ch13. PMID: 9189625.
Yang J, Kawasaki K, Lee M, Reid BM, Nunez SM, Choi M, et al. The dentin phos-phoprotein repeat region and inherited defects of dentin. Mol Genet Genomic Med. 2016;4(1):28–38. DOI: 10.1002/mgg3.176. PMID: 26788535. PMCID: PMC4707025.
Kim JW, Hu JC, Lee JI, Moon SK, Kim YJ, Jang KT, et al. Mutational hot spot in the DSPP gene causing dentinogenesis imperfecta type II. Hum Genet. 2005;116(3):186–91. DOI: 10.1007/s00439-004-1223-6. PMID: 15592686.
Wang X, Willing MC, Marazita ML, Wendell S, Warren JJ, Broffitt B, et al. Genetic and environmental factors associated with dental caries in children: the Iowa Fluoride Study. Caries Res. 2012;46(3):177–84. DOI: 10.1159/000337282. PMID: 22508493. PMCID: PMC3580152.
Zhang X, Zhao J, Li C, Gao S, Qiu C, Liu P, et al. DSPP mutation in dentinogenesis imperfecta shields type II. Nat Genet. 2001;27(2):151–2. DOI: 10.1038/84765. PMID: 11175779.
Xiao S, Yu C, Chou X, Yuan W, Wang Y, Bu L, et al. Dentinogenesis imperfecta 1 with or without progressive hearing loss is associated with distinct mutations in DSPP. Nat Genet. 2001;27(2):201–4. DOI: 10.1038/84848. Erratum in: Nat Genet. 2001;27(3):345. PMID: 11175790.
Rajpar MH, Harley K, Laing C, Davies RM, Dixon MJ. Mutation of the gene encod-ing the enamel-specific protein, enamelin, causes autosomal-dominant amelogenesis imperfecta. Hum Mol Genet. 2001;10(16):1673–7. DOI: 10.1093/hmg/10.16.1673. PMID: 11487571.
Kang SW, Yoon I, Lee HW, Cho J. Association between AMELX polymorphisms and dental caries in Koreans. Oral Dis. 2011;17(4):399–406. DOI: 10.1111/j.1601-0825.2010.01766.x. PMID: 21114591.
Slayton RL, Cooper ME, Marazita ML. Tuftelin, mutans streptococci and dental caries susceptibility. J Dent Res. 2005;84(8):711–4. DOI: 10.1177/154405910508400805. PMID: 16040727.
Deeley K, Letra A, Rose EK, Brandon CA, Resick JM, Marazita ML, Vieira AR. Possible association of amelogenin to high caries experience in a Guatemalan-Mayan popula-tion. Caries Res. 2008;42(1):8–13. DOI: 10.1159/000111744. PMID: 18042988. PMCID: PMC2814012.
Shaffer JR, Wang X, DeSensi RS, Wendell S, Weyant RJ, Cuenco KT, et al. Genetic susceptibility to dental caries on pit and fissure and smooth surfaces. Caries Res. 2012;46(1): 38–46. DOI: 10.1159/000335099. PMID: 22286298. PMCID: PMC3304515.
Guzmán-Armstrong S. Rampant caries. J Sch Nurs. 2005;21(5):272–278. DOI: 10.1177/10598405050210050501. PMID: 16262438.
Shaffer JR, Feingold E, Wang X, Weeks DE, Weyant RJ, Crout R, et al. Clustering tooth surfaces into biologically informative caries outcomes. J Dent Res. 2013;92(1):32–7. DOI: 10.1177/0022034512463241. PMID: 23064960. PMCID: PMC3521447.
Culp DJ, Quivey RQ, Bowen WH, Fallon MA, Pearson SK, Faustoferri R. A mouse caries model and evaluation of aqp5-/- knockout mice. Caries Res. 2005;39(6):448–54. DOI: 10.1159/000088179. PMID: 16251788.
Viejo-Díaz M, Andrés MT, Fierro JF. Modulation of in vitro fungicidal activity of human lactoferrin against Candida albicans by extracellular cation concentration and target cell metabolic activity. Antimicrob Agents Chemother. 2004;48(4):1242–8. DOI: 10.1128/AAC.48.4.1242-1248.2004. PMID: 15047526. PMCID: PMC375254.