Comparative characteristics of chronic colitis experimental models reproduced in vivo
PDF (Українська)

Keywords

experimental model
colitis
gastrointestinal tract inflammatory diseases

How to Cite

Babenko , O., Briukhanova, T., Nakonechna , O., Vasylyeva , I., & Stetsenko , S. (2022). Comparative characteristics of chronic colitis experimental models reproduced in vivo . Medicine Today and Tomorrow, 91(1), 6-16. https://doi.org/10.35339/msz.2022.91.1.bbn

Abstract

The review presents modern ideas about the prevalence and etiopathogenesis of the gastrointestinal tract inflammatory diseases, in particular, colitis. The factors that determine their high medical and social significance and the main complications that could develop under these conditions are identified. According to the literature, chronic colitis of various etiologies provoke significant pathological changes in the qualitative and quantitative of the small intestinal microflora composition, which leads to disturbances of a number of biologically active compounds synthesis and immune system pathological changes. Unfortunately, in a significant number of patients with chronic enterocolitis develop serious complications, and approximately in 10% of patients develop colorectal cancer, which has an unfavorable prognosis. The article presents a comparative analysis of colitis experimental models with different etiology (spontaneous, induced, colitis model with using genetically modified animals, etc.). Different courses (acute and chronic), different histological and biochemical changes are typical for colitis different models. Each experimental model has features of reproduction in laboratory animals. Therefore, it is necessary to take into account pathologies features and choose an experimental model depending on the purpose of the study. In particular, the model of formalin-induced colitis or acetic acid-induced colitis is optimal for the study of the pathogenesis proinflammatory component, the model of peptidoglycan-polysaccharide-induced colitis or dextran sodium sulfate-induced colitis is preferable model for chronic ulcerative colitis evaluation.

Keywords: experimental model, colitis, gastrointestinal tract inflammatory diseases.

https://doi.org/10.35339/msz.2022.91.1.bbn
PDF (Українська)

References

Antoni L, Nuding S, Wehkamp J, Stange EF. Intestinal barrier in inflammatory bowel disease. World J Gastroenterol. 2014;20(5):1165–1179. DOI: 10.3748/wjg.v20.i5.1165. PMID: 24574793. PMCID: PMC3921501.

Soularue E, Lepage P, Colombel JF, Coutzac C, Faleck D, Marthey L, et al. Entero-colitis due to immune checkpoint inhibitors: a systematic review. Gut. 2018;67(11):2056–67. DOI: 10.1136/gutjnl-2018-316948. PMID: 30131322.

Han SM, Hong CR, Knell J, Edwards EM, Morrow KA, Soll RF, et al. Trends in in-cidence and outcomes of necrotizing enterocolitis over the last 12 years: a multicenter cohort analysis. J Pediatr Surg. 2020;55(6):998–1001. DOI: 10.1016/j.jpedsurg.2020.02.046. PMID: 32173122.

Cuna AC, Reddy N, Robinson AL, Chan SS. Bowel ultrasound for predicting surgi-cal management of necrotizing enterocolitis: a systematic review and meta-analysis. Pediatr Radiol. 2018;48(5):658–66. DOI: 10.1007/s00247-017-4056-x. PMID: 29260286. PMCID: PMC5895673.

Weinberger T, Feuille E, Thompson C, Nowak-Węgrzyn A. Chronic food protein–induced enterocolitis syndrome: characterization of clinical phenotype and literature review. Ann Allergy Asthma Immunol. 2016;117(3):227–33. DOI: 10.1016/j.anai.2016.03.004. PMID: 27613454.

Carlisle EM, Morowitz MJ. The intestinal microbiome and necrotizing enterocolitis. Curr Opin Pediatr. 2013;25(3):382–87. DOI: 10.1097/MOP.0b013e3283600e91. PMID: 23657248.

McKenna P, Hoffmann C, Minkah N, Aye PP, Lackner A, Liu Z, et al. The macaque gut microbiome in health, lentiviral infection, and chronic enterocolitis. PLoS Pathog. 2008;4(2):e20. DOI: 10.1371/journal.ppat.0040020. PMID: 18248093. PMCID: PMC2222957.

Halfvarson J, Brislawn CJ, Lamendella R, Vázquez-Baeza Y, Walters WA, Bramer LM, et al. Dynamics of the human gut microbiome in inflammatory bowel disease. Nat Microbiol. 2017;2(5):17004. DOI: 10.1038/nmicrobiol.2017.4. PMID: 28191884. PMCID: PMC5319707.

Felismino TC, de Jesus VHF, de Mendonça Uchóa Junior BC, Moura FGR, Riechelmann RP, et al. Clinical factors related to severe enterocolitis after adjuvant CAPOX for colorectal cancer: a retrospective analysis. Ecancermedicalscience, 2020;14:1014. DOI: 10.3332/ecancer.2020.1014. PMID: 32256697. PMCID: PMC7105333.

Yang Y, Jobin C. Novel insights into microbiome in colitis and colorectal cancer. Curr Opin Gastroenterol. 2017;33(6):422–7. DOI: 10.1097/MOG.0000000000000399. PMID: 28877044. PMCID: PMC5826583.

International statistical classification of Diseases and Related Health Problems (ICD). WHO. Available from: https://www.who.int/standards/classifications/classification-of-diseases

Roda G, Chien Ng S, Kotze PG, Argollo M, Panaccione R, Spinelli A, et al. Crohn’s disease. Nat Rev Dis Primers, 2020;6(1):22. DOI: 10.1038/s41572-020-0156-2. PMID: 32242028.

Rubin DT, Abreu MT, Rai V, Siegel CA, Ahuja V, Allez M, Ungaro R. Manage-ment of patients with Crohn’s disease and ulcerative colitis during the coronavirus disease-2019 pandemic: results of an international meeting. Gastroenterology. 2020;159(1):6–13.e6. DOI: 10.1053/j.gastro.2020.04.002. PMID: 32272113. PMCID: PMC7194599.

Veauthier B, Hornecker JR. Crohn’s disease: diagnosis and management. Am Fam Physician. 2018;98(11):661–669. PMID: 30485038.

Gajendran M, Loganathan P, Catinella AP, Hashash JG. A comprehensive review and update on Crohn’s disease. Dis Mon. 2018;64(2):20–57. PMID: 28826742. DOI: 10.1016/j.disamonth.2017.07.001.

Rubin DT, Ananthakrishnan AN, Siegel CA, Sauer BG, Long MD. (2019). ACG clinical guideline: ulcerative colitis in adults. Am J Gastroenterol. 2019;114(3):384–413. DOI: 10.14309/ajg.0000000000000152. PMID: 30840605.

Gajendran M, Loganathan P, Jimenez G, Catinella AP, Ng N, Umapathy C, et al. A comprehensive review and update on ulcerative colitis. Dis Mon. 2019;65(12):100851. DOI: 10.1016/j.disamonth.2019.02.004. PMID: 30837080.

Yangyang RY, Rodriguez, JR. Clinical presentation of Crohn’s, ulcerative colitis, and indeterminate colitis: Symptoms, extraintestinal manifestations, and disease phenotypes. Semin Pediatr Surg. 2017;26(6):349–55. DOI: 10.1053/j.sempedsurg.2017.10.003. PMID: 29126502.

Zhang CRC, Nix D, Gregory M, Ciorba MA, Ostrander EL, Newberry RD, et al. Inflammatory cytokines promote clonal hematopoiesis with specific mutations in ulcerative colitis patients. Exp Hematol. 2019;80:36–41.e3. DOI: 10.1016/j.exphem.2019.11.008. PMID: 31812712. PMCID: PMC7031927.

Salem HA, Wadie W. Effect of niacin on inflammation and angiogenesis in a murine model of ulcerative colitis. Sci Rep. 2017;7:7139. DOI: 10.1038/s41598-017-07280-y.

Randhawa PK, Singh K, Singh N, Jaggi AS. A review on chemical-induced inflam-matory bowel disease models in rodents. Korean J Physiol Pharmacol. 2014;18(4):279–88. DOI: 10.4196/kjpp.2014.18.4.279. PMID: 25177159. PMCID: PMC4146629.

Hardin JA, Wallace LE, Wong JFK, O’loughlin EV, Urbanski SJ, Gall DG, et al. Aquaporin expression is downregulated in a murine model of colitis and in patients with ul-cerative colitis, Crohn’s disease and infectious colitis. Cell Tissue Res. 2004;318(2):313–23. DOI: 10.1007/s00441-004-0932-4. PMID: 15338270.

Snider AJ, Bialkowska AB, Ghaleb AM, Yang VW, Obeid LM, Hannun YA. Mu-rine model for colitis-associated cancer of the colon. Methods Mol Biol. 2016;1438:245–54. DOI: 10.1007/978-1-4939-3661-8_14. PMID: 27150094. PMCID: PMC5657253.

Cominelli F, Nast CC, Duchini A, Lee M. Recombinant interleukin-1 receptor an-tagonist blocks the proinflammatory activity of endogenous interleukin-1 in rabbit immune colitis. Gastroenterology. 1992;103(1):65–71. DOI: 10.1016/0016-5085(92)91096-m. PMID: 1535326.

Hartmann RM, Morgan Martins MI, Tieppo J, Fillmann HS, Marroni NP. Effect of Boswellia serrata on antioxidant status in an experimental model of colitis rats induced by ace-tic acid. Dig Dis Sci. 2012;57(8):2038–44. DOI: 10.1007/s10620-012-2134-3. PMID: 22451119.

Gubina-Vakyulyk GI, Gorbach TV, Tkachenko AS, Tkachenko MO. Damage and regeneration of small intestinal enterocytes under the influence of carrageenan induces chronic enteritis. Comp Clin Pathol. 2015;24(6):1473–77. DOI: 10.1007/s00580-015-2102-3.

Abimosleh SM, Tran CD, Howarth GS. Emu oil reduces small intestinal inflamma-tion in the absence of clinical improvement in a rat model of indomethacin-induced enteropa-thy. Evid Based Complement Alternat Med. 2013;2013:429706. DOI: 10.1155/2013/429706.

Siregar RA, Widyawati T. Chemically-induced colitis models in animal. Sumatera Medical Journal. 2021;4(2):10–7.

Gadaleta RM, Garcia‐Irigoyen O, Moschetta A. Exploration of inflammatory bowel disease in mice: chemically induced murine models of inflammatory bowel disease (IBD). Curr Protoc Mouse Biol. 2017;7(1):13–28. DOI: 10.1002/cpmo.20. PMID: 28252200.

Hall LJ, Faivre E, Quinlan A, Shanahan F, Nally K, Melgar S. Induction and activa-tion of adaptive immune populations during acute and chronic phases of a murine model of experimental colitis. Dig Dis Sci. 2011;56(1):79–89. DOI: 10.1007/s10620-010-1240-3. PMID: 20467900.

Coutinho de Sousa B, Reis Machado J, da Silva MV, da Costa TA, Lazo-Chica JE, Degasperi TD, et al. Morinda citrifolia (Noni) fruit juice reduces inflammatory cytokines ex-pression and contributes to the maintenance of intestinal mucosal integrity in DSS experi-mental colitis. Mediators Inflamm. 2017;2017:6567432. DOI: 10.1155/2017/6567432. PMID: 28194046. PMCID: PMC5282445.