Chronic inflammation asociated with obesity, diabetes mellitus type 2 and cardiovascular risk as a target for therapeutic interventions. Part 1
PDF (Українська)

Keywords

cardiometabolic disorders
inflammation
medications

How to Cite

Riabukha, V. (2020). Chronic inflammation asociated with obesity, diabetes mellitus type 2 and cardiovascular risk as a target for therapeutic interventions. Part 1. Medicine Today and Tomorrow, 81(4), 44–50. Retrieved from https://msz.knmu.edu.ua/article/view/339

Abstract

The review is devoted to an actual research problem such as a chronic inflammation associated with obesity, diabetes mellitus type 2 and cardiovascular risk. As far as inflammation plays a role of pathologic mediator in these comorbid states, there are several attempts to influence on a chronic inflammatory process with medications for reduction of cardiovascular atherosclerotic disease risk are being done. It’s related to an existence of some pathogenic signal mechanisms initiated and supported inflammation as well as involved it to the development of insulin resistance and atherogenesis. Several therapeutic interventions with pleiotropic anti-inflammatory action such as weight loss, therapy with statins, a usage of antidiabetic medications as well as pharmacologic interventions that directly target inflammation (salicylates, low-dose methotrexate, biologics as anti-inflammatory drugs) and other therapeutic measures with anti-inflammatory effect (antileukotrienic therapy) are discussed in the context of their influence on cardiometabolic risk.

PDF (Українська)

References

Gregg E.W., Li Y., Wang J., Burrows N.R., Ali M.K., Rolka D. et al. (2014). Changes in diabetes-related complications in the United States, 1990–2010. N. Engl. J. Med., vol. 370, № 16, pp. 1514–1523.

Goldfine A.B., Shoelson S.E. (2017). Therapeutic approaches targeting inflammation for diabetes and associated cardiovascular risk. J. Clin. Invest., vol. 127, № 1, pp. 83–93.

Li G., Zhang P., Wang J., An Y., Gong Q., Gregg E.W. et al. (2014). Cardiovascular mortality, all-cause mortality, and diabetes incidence after life style intervention for people with impaired glucose tolerance in the Da Qing Diabetes Prevention Study: a 23-year follow-up study. Lancet Diabetes Endocrinol., vol. 2, № 6, pp. 474–480.

Apovian C.M., Aronne L., Rubino D., Still S., Wyatt H., Burns C. et al. (2013). A randomized, phase 3 trial of naltrexone SR/bupropion SR on weight and obesity-related risk factors (COR-II). Obesity (Silver Spring), vol. 21, № 5, pp. 935–943.

Derosa G., Maffioli P., Sahebkar A. (2016). Improvement of plasma adiponectin, leptin and C-reactive protein concentrations by orlistat: a systematic review and meta-analysis. Br. J. Clin. Pharmacol., vol. 81, № 5, pp. 819–834.

Garvey W.T., Ryan H.D., Henry R., Bohannon N.J., Toplak H., Schwiers M. et al. (2014). Prevention of type 2 diabetes in subjects with prediabetes and metabolic syndrome treated with phentermine and topiramate extended release. Diabetes Care, vol. 37, № 4, pp. 912–921.

Sahebkar A., Giosia D.P., Stamerra C.A., Grassi D., Pedone S., Ferretti G. et al. (2016). Effect of monoclonal antibodies to PCSK9 on high-sensitivity C-reactive protein levels: a meta-analysis of 16 randomized controlled treatment arms. Br. J. Clin. Pharmacol., vol. 81, № 6, pp. 1175–1190.

Swerdlow D.I., Preiss D., Kuchenbaccker K.B., Holmes M.V., Engmann J.E., Shah T. et al. (2015). HMG-coenzyme A reductase inhibition, type 2 diabetes, and bodyweight: evidence from genetic analysis and randomized trials. Lancet, vol. 385 (9965), pp. 351–361.

Cusi K., Orsak B., Bril F., Lomonaco R., Hecht J., Ortiz-Lopez C. et al. (2016). Long-term pioglitazone treatment for patients with nonalcoholic steatohepatitis and prediabetes or type 2 diabetes mellitus: a randomized trial. Ann. Intern. Med., vol. 165, № 5, pp. 305–315.

Kernan W.N., Viscoli C.M., Furie K.L., Yong L.H., Inzucchi S.E., Gorman M. et al. for the IRIS Trial Investigators (2016). Pioglitazone after ischemic stroke or transient ischemic attack. N. Engl. J. Med., vol. 374, № 14, pp. 1321–1331.

Madiraju A.K., Erion D.M., Rahimi Y., Zhang X.M., Braddoek D.T., Albright R.A. (2014). Metformin suppresses gluconeogenesis by inhibiting mitochondrial glycerophosphate dehydrogenase. Nature, vol. 510, № 7506, pp. 542–546.

Kelly B., Tannahill G.M., Murphy M.P., O’Neill L.A. (2015). Metformin inhibits the production of reactive oxygen species from NADH-ubiquinone oxidoreductase to limit induction of interleukin-1β (IL-1β) and boosts interleukin-10 (IL-10) in lipopolysaccharide (LPS)-activated macrophages. J. Biol. Chem., vol. 290, № 33, pp. 20348–20355.

Vasamsetti S.B., Karnewar S., Kanugula A.K., Thatipalli A.R., Kumar J.M., Kotamraju S. (2015). Metformin inhibits monocyte-to-macrophage differentiation via AMPK-mediated inhibition of STATS activation: potential role in atherosclerosis. Diabetes, vol. 64, № 6, pp. 2028–2041.

Green J.B., Bethal A., Armstrong P.A., Buse J.B., Engel S.S., Garg J. et al. for the TECOS Study Group (2015). Effect of sitagliptin on cardiovascular outcomes in type 2 diabetes. N. Engl. J. Med., vol. 373, № 3, pp. 232–242.

Marso S.P., Daniels G.H., Brown-Frandsen K., Kristensen P., Mann J.F.E., Nauck M.A. et al. for the LEADER Steering Committee on behalf of the LEADER Trial Investigators (2016). Liraglutide and cardiovascular outcomes in type 2 diabetes. N. Engl. J. Med., vol. 375, № 4, pp. 311–322.

Marso S.P., Bain S.C., Consoli A., Eliaschewitz F.G., Jodar E., Leiter L.A. et al. (2016). Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N. Engl. J. Med., vol. 375, pp. 1834–1844.

Pfeffer M.A., Claggett B., Diaz R., Dickstein K., Gerstein H.C., Kober L.V. et al. (2015). Lixisenatide in patients with type 2 diabetes and acute coronary syndrome. N. Engl. J. Med., vol. 373, № 23, pp. 2247–2257.

Barnett A.H., Mithal A., Manassie J., Jones R., Rattunde H., Weerie H.J. et al. (2014). Efficacy and safety of empagliflozin added to existing antidiabetes treatment in patients with type 2 diabetes and chronic kidney disease: a randomized double-blind, placebo-controlled trial. Lancet Diabetes Endocrinol., vol. 2, № 5, pp. 369–384.

Nakano S., Kaysuno K., Isaji M., Nagasawa T., Buehrer B., Walker S. et al. (2015). Remogliflozin etabonate improves fatty liver disease in diet-induced obese male mice. J. Clin. Exp. Hepatol., vol. 5, № 3, pp. 190–198.

Wanner C., Inzucchi S.E., Lachin J.M., Fitchett D., von Eynatten M., Mattheus M. et al. for the EMPA-REG OUTCOME Investigators (2016). Empagliflozin and progression of kidney disease in type 2 diabetes. N. Engl. J. Med., vol. 375, № 4, pp. 323–334.