Biological and medical value of antioxidant protection system of the human body
PDF (Українська)

Keywords

antioxidant system
classification
glutathione system
manganese superoxide dismutase

How to Cite

Kovalyova, O., & Pasiieshvili, T. (2021). Biological and medical value of antioxidant protection system of the human body . Medicine Today and Tomorrow, 90(1), 21-32. https://doi.org/10.35339/msz.2021.90.01.03

Abstract

In press

The article is devoted to the antioxidant system of the human body in the context of biological and medical significance. The classification of antioxidants in terms of their physical and chemical properties, bioorganic compounds, biochemical effects, mechanisms of implementation of antioxidant protection is presented. The given processes of extreme radical oxidation and mechanisms of antioxidant defense in physiological and pathological conditions. The characteristics of the components of the glutathione system, namely glutathione and enzymes – glutathione peroxidase, glutathione reductase and glutathione transferase are presented. Much attention is paid to manganese superoxide dismutase, an antiradical defense enzyme, as a fundamental regulator of cell proliferation, a mediator of metabolism and apoptosis. Interpretation of changes in the antioxidant enzyme of mitochondrial origin from a prognostic point of view is interpreted on the basis of the results of clinical observations carried out by scientists in various human diseases. The expediency of determining manganese superoxide dismutase in clinical practice for the diagnostic search for the direction of the pathological process, the timely detection of complications and the appointment of adequate therapy is emphasized.

Keywords: antioxidant system, classification, glutathione system, manganese superoxide dismutase.

https://doi.org/10.35339/msz.2021.90.01.03
PDF (Українська)

References

Hildeman, D. A., Mitchell, T., Kappler, J., & Marrack, P. (2003). T cell apoptosis and reactive oxygen species. The Journal of Clinical Investigation, 111(5), 575–581. DOI: 10.1172/JCI18007. PMID: 12618509. PMCID: PMC151907.

Mittler, R., Vanderauwera, S., Suzuki, N. Miller, G., Tognetti, V. B., Vandepoele, K. et al. (2011). ROS signaling: the new wave? Trends in Plant Science, 16(6), 300–309. DOI: 10.1016/j.tplants.2011.03.007. PMID: 21482172.

Finkel, T. (2011). Signal transduction by reactive oxygen species. The Journal of Cell Biology, 194(1), 7–15. DOI: 10.1083/jcb.201102095. PMID: 21746850. PMCID: PMC3135394.

Pham-Huy, L. A., He, H., & Pham-Huy, C. (2008). Free radicals, antioxidants in disease and health. International Journal of Biomedical Science: IJBS, 4(2), 89–96. PMID: 23675073. PMCID: PMC3614697.

Birben, E., Sahiner, U. M., Sackesen, C., Erzurum, S., & Kalayci, O. (2012). Oxidative stress and antioxidant defense. The World Allergy Organization Journal, 5(1), 9–19. DOI: 10.1097/WOX.0b013e3182439613. PMID: 23268465. PMCID: PMC3488923.

Genestra, M. (2007). Oxyl radicals, redox-sensitive signalling cascades and antioxidants. Cellular Signalling, 19(9), 1807–1819. DOI: 10.1016/j.cellsig.2007.04.009. PMID: 17570640.

Ighodaro, O. M., & Akinloye, O. A. (2018). First line defence antioxidants-superoxide dis-mutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alexandria Journal of Medicine, 54(4), 287–293. DOI: 10.1016/j.ajme.2017.09.001.

Gill, S. S., & Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry: PPB, 48(12), 909–930. DOI: 10.1016/j.plaphy.2010.08.016. PMID: 20870416.

Liang, H., Ran, Q., Jang, Y. C., Holstein D., Lechleiter J., McDonald-Marsh T. et al. (2009). Glutathione peroxidase 4 differentially regulates the release of apoptogenic proteins from mitochondria. Free Radical Biology & Medicine, 47(3), 312–320. DOI: 10.1016/j.freeradbiomed.2009.05.012. PMID: 19447173. PMCID: PMC2773016.

Kryukov, G. V., Castellano, S., Novoselov, S. V., Lobanov, A. V., Zehtab, O., Guigó, R., Gladyshev, V. N. (2003). Characterization of mammalian selenoproteomes. Science (New York), 300(5624), 1439–1443. DOI: 10.1126/science.1083516. PMID: 12775843.

Burk, R. F., Olson, G. E., Winfrey, V. P., Hill, K. E., Yin, D. (2011). Glutathione peroxidase-3 produced by the kidney binds to a population of basement membranes in the gastrointestinal tract and in other tissues. American Journal of Physiology. Gastrointestinal and Liver Physiology, 301(1), 32–38. DOI: 10.1152/ajpgi.00064.2011. PMID: 21493731. PMCID: PMC3280860.

Baek, I. J., Seo, D. S., Yon, J. M., Lee, S. R., Jin, Y., Nahm, S. S. et al. (2007). Tissue ex-pression and cellular localization of phospholipid hydroperoxide glutathione peroxidase (PHGPx) mRNA in male mice. Journal of Molecular Histology, 38(3), 237–244. DOI: 10.1007/s10735-007-9092-7. PMID: 17503194.

Noblanc, A., Kocer, A., Chabory, E., Vernet, P., Saez, F., Cadet, R. et al. (2011). Glutathione peroxidases at work on epididymal spermatozoa: an example of the dual effect of reactive oxygen species on mammalian male fertilizing ability. Journal of Andrology, 32(6), 641–650. DOI: 10.2164/jandrol.110.012823. PMID: 21441427.

Lavryshyn, Y., Varkholyak, I., Martyschuk, T., Guta, Z., & Ivankiv, L. (2016). Biolohichne znachennia systemy antyoksydantnoho zakhystu orhanizmu tvaryn [The biological significance of the antioxidant defense system of animals body]. Naukovyi visnyk Lvivskoho natsionalnoho universytetu veterynarnoi medytsyny ta biotekhnolohii imeni S.Z. Gzhytskoho. Seriia: Veteynarni Nauky – Scientific Messenger of LNU of Veterinary Medicine and Biotechnologies. Series: Veterinary Sciences, 18(2(66)), 100–111. DOI: 10.15421/nvlvet6622.

Zelko, I. N., Mariani, T. J., & Folz, R. J. (2002). Superoxide dismutase multigene family: a comparison of the CuZn-SOD (SOD1), Mn-SOD (SOD2), and EC-SOD (SOD3) gene structures, evolution, and expression. Free Radical Biology & Medicine, 33(3), 337–349. DOI: 10.1016/s0891-5849(02)00905-x. PMID: 12126755.

Ho, Y. S., & Crapo, J. D. (1988). Isolation and characterization of complementary DNAs encoding human manganese-containing superoxide dismutase. FEBS Letters, 229(2), 256–260. DOI: 10.1016/0014-5793(88)81136-0. PMID: 2831093.

Reuter, S., Gupta, S. C., Chaturvedi, M. M., & Aggarwal, B. B. (2010). Oxidative stress, in-flammation, and cancer: how are they linked? Free Radical Biology & Medicine, 49(11), 1603–1616. DOI: 10.1016/j.freeradbiomed.2010.09.006. PMID: 20840865. PMCID: PMC2990475.

Flynn, J. M., & Melov, S. (2013). SOD2 in mitochondrial dysfunction and neurodegeneration. Free Radical Biology & Medicine, 62, 4–12. DOI: 10.1016/j.freeradbiomed.2013.05.027. PMID: 23727323. PMCID: PMC3811078.

Gupta, R. K., Patel, A. K., Shah, N., Chaudhary, A. K., Jha, U. K., Yadav, U. C. et al. (2014). Oxidative stress and antioxidants in disease and cancer: a review. Asian Pacific Journal Of Cancer Prevention: APJCP, 15(11), 4405–4409. DOI: 10.7314/apjcp.2014.15.11.4405. PMID: 24969860.

Sharma, K. (2016). Obesity and diabetic kidney disease: role of oxidant stress and redox balance. Antioxidants & Redox Signaling, 25(4), 208–216. DOI: 10.1089/ars.2016.6696. PMID: 26983586. PMCID: PMC4964755.

Zaika, M. V., & Kovalyova, O. N. (2006). 8-izoprostan kak marker oksidativnoho stressa u patsiientov s khronicheskoi serdechnoi nedostatochnostiu [8-isoprostane as a marker of oxidative stress in patients with chronic heart failure]. Ukrainskyi kardіolohіchnyi zhurnal – Ukrainian Journal of Cardiology, (4), 55–57 [in Russian].

Kovalyova, O. N., Ashcheulova, T. V., Gerasimchuk, N. N., & Safargalina-Kornilova, N. А. (2015). Rol oksidativnoho stressa v stanovlenii i prohressirovanii hipertonicheskoi bolezni [Role of oxidative stress in the formation and progression of hypertensive diseas]. Nauchnyie vedomosti. Seriia Meditsina. Farmatsiia – Scientific Statements. Series Medicine. Pharmacy, 4(201) (29), 5–10. Retrieved from https://cyberleninka.ru/article/n/rol-oksidativnogo-stressa-v-stanovlenii-i-progressirovanii-gipertonicheskoy-bolezni/viewer [in Russian].

Kovalyova, O. M., Gerasymchuk, N. M., & Safarhalina-Kornilova, N. A. (2012). Vplyv nadmirnoi masy tila ta ozhyrinnia na riven 8-izoprostanu, aktyvnist superoksyddysmutazy i katalazy u patsiientiv z hipertonichnoiu khvoroboiu [Influences of overwight and obesity on blood plasma 87isoprostane levels and antioxidant enzyme activity in patients with arterial hypertension]. Krovoobih ta hemostaz – Circulation and Haemostasis, (1–2), 70–74. Retrieved from http://circhem.org.ua/journal/j-2012_1-2.pdf [in Ukrainian].

Yamakura, F., & Kawasaki, H. (2010). Post-translational modifications of superoxide dis-mutase. Biochimica et Biophysica Acta, 1804(2), 318–325. DOI: 10.1016/j.bbapap.2009.10.010. PMID: 19837190.

Roos, C. M., Hagler, M., Zhang, B., Oehler, E. A., Arghami, A., & Miller, J. D. (2013). Transcriptional and phenotypic changes in aorta and aortic valve with aging and MnSOD deficiency in mice. American Journal of Physiology. Heart and Circulatory Physiology, 305(10), 1428–1439. DOI: 10.1152/ajpheart.00735.2012. PMID: 23997094. PMCID: PMC3840262.

Miller, D. J., Cascio, M. A., & Rosca, M. G. (2020). Diabetic retinopathy: the role of mitochondria in the neural retina and microvascular disease. Antioxidants (Basel, Switzerland), 9(10), Article 905. DOI: 10.3390/antiox9100905. PMID: 32977483. PMCID: PMC7598160.

Santos, J. M., Tewari, S., & Kowluru, R. A. (2012). A compensatory mechanism protects retinal mitochondria from initial insult in diabetic retinopathy. Free Radical Biology & Medicine, 53(9), 1729–1737. DOI: 10.1016/j.freeradbiomed.2012.08.588. PMID: 22982046. PMCID: PMC3632051.

Kashkalda, D. A., Kosovtsova, G. V., Turchina, S. I., Sukhova, L. L., & Sotnikova-Meleshkina, Zh. V. (2020). Osoblyvosti protsesiv vilnoradykalnoho okyslennia ta antyoksydantnoho zakhystu u khloptsiv-pidlitkiv iz hipoandroheniieiu v zalezhnosti vid funktsionalnoho stanu shchytopodibnoi zalozy [Features of free radical oxidation and antioxidant protection in adolescent boys with hypoandrogenism depending on the functional condition of the thyroid gland]. Problemy endokrynnoi patolohii – Problems of Endocrine Pathology, (1), 30–35. DOI: 10.21856/j-PEP.2020.1.04.

Kovalyova, O. M., & Pasiieshvili, T. M. (2020). The activity of mitochondrial antioxidant defense system in young patients with gastroesophageal reflux disease. Inter Collegas, (4), 164–167. DOI: 10.35339/ic.7.4.164-167.

Chandra, M., Panchatcharam, M., & Miriyala, S. (2015). Manganese superoxide dismutase: guardian of the heart dysfunction. MOJ Anatomy & Physiology, 1(2), 27‒28. DOI: 10.15406/mojap.2015.01.00006.

He, L., He, T., Farrar, S., Ji, L., Liu, T., & Ma, X. (2017). Antioxidants maintain cellular redox homeostasis by elimination of reactive oxygen species. Cell Physiol. Biochem, 44(2), 532–553. DOI: 10.1159/000485089. PMID: 29145191.

Chen, Y., Zhou, Z., & Min, W. (2018). Mitochondria, oxidative stress and innate immunity. Frontiers in Physiology, 9, Article 1487. DOI: 10.3389/fphys.2018.01487. PMID: 30405440. PMCID: PMC6200916.

Kitada, M., Xu, J., Ogura, Y., Monno, I., & Koya, D. (2020). Manganese superoxide dismutase dysfunction and the pathogenesis of kidney disease. Frontiers in Physiology, 11, Article 755. DOI: 10.3389/fphys.2020.00755. PMID: 32760286. PMCID: PMC7373076.

Ansenberger-Fricano, K., Ganini, D., Mao, M., Chatterjee, S., Dallas, S., Mason, R. P. et al. (2013). The peroxidase activity of mitochondrial superoxide dismutase. Free Radical Biology & Medicine, 54, 116–124. DOI: 10.1016/j.freeradbiomed.2012.08.573. PMID: 31968997. PMCID: PMC7047081.

Ekoue, D. N., He, C., Diamond, A. M., & Bonini, M. G. (2017). Manganese superoxide dismutase and glutathione peroxidase-1 contribute to the rise and fall of mitochondrial reactive oxygen species which drive oncogenesis. Biochimica Et Biophysica Acta (BBA) – Bioenergetics, 1858(8), 628–632. DOI: 10.1016/j.bbabio.2017.01.006. PMID: 28087256. PMCID: PMC5689482.

Liu, Z., Li, S., Cai, Y., Wang, A., He, Q., Zheng, C. et al. (2012). Manganese superoxide dismutase induces migration and invasion of tongue squamous cell carcinoma via H2O2-dependent Snail signaling. Free Radical Biology & Medicine, 53(1), 44–50. DOI: 10.1016/j.freeradbiomed.2012.04.031. PMID: 22580338. PMCID: PMC3377784.

Hemachandra, L. P., Shin, D. H., Dier, U., Iuliano, J. N., Engelberth, S. A., Uusitalo, L. M. et al. (2015). Mitochondrial superoxide dismutase has a protumorigenic role in ovarian clear cell carcinoma. Cancer Research, 75(22), 4973–4984. DOI: 10.1158/0008-5472.CAN-14-3799. PMID: 26359457. PMCID: PMC4651777.

Zuo, J., Zhao, M., Liu, B., Han, X., Li, Y., Wang, W. et al. (2019). TNF-α-mediated upregulation of SOD-2 contributes to cell proliferation and cisplatin resistance in esophageal squamous cell carcinoma. Oncology Reports, 42(4), 1497–1506. DOI: 10.3892/or.2019.7252. PMID: 31364751.

Li, J., Liu, Y., Liu, Q. (2020). [Expression of superoxide dismutase 2 in breast cancer and its clinical significance]. Nan Fang Yi Ke Da Xue Xue Bao, 40(8), 1103–1111. DOI: 10.12122/j.issn.1673-4254.2020.08.06. PMID: 32895185. PMCID: PMC7429158 [in Chinese].

Kovalyova, O., Chukhrienko, N., Pasiieshvili, T., Pasiyeshvili, L., & Zhelezniakova, N. (2020). The state of antioxidant defense system in young persons with gastroesophageal reflux dis-ease and autoimmune thyrioditis. Medicni Perspektivi (Medical Perspectives), 25(4), 87–93. DOI: 10.26641/2307-0404.2020.4.221237