Abstract
Сryopreserved spermatozoa are widely used in infertility treatment by assisted reproductive technologies. However, the spermatozoa survival rate remains low in patients with oligoastenoteratozoospermia. Therefore the development of effective cryopreservation methods for spermatozoa from pathospermia is relevant. The effectiveness of cryopreservation spermatozoa from oligoastenoteratozoospermia man using penetrating and non-penetrating cryoprotectants was compared. Sperm motility, viability and morphological characteristics were evaluated after cryopreservation with glycerol and polyvinylpyrrolidone. The average number of spermatozoa count in fresh ejaculate was (11.0±0.2) mln/ml. After isolation of active motile fraction the number of cells was (3.8±0.3) mln/ml and (84.3±8.4) % from them were motile (group 3). (78.8±6.6) % of spermatozoa cryopreserved with glycerol (group 1) and (41.4±8.1) % cryopreserved with polyvinylpyrrolidone (group 2) remained active motile. The spermatozoa viability after cryopreservation was (82.1±8.6) % and (89.6±8.6) % in group 1 and 2, respectively. Despite the high rate of spermatozoa survival in group 1 the number of motile cells decreased to (27.3±4.8) % after cryoprotectant removing stage. Morphological analysis revealed that the incidence of spermatozoa head abnormalities was (25.97±2.67), (19.21±2.67) and (20.57±1.19) % in group 1–3, respectively. The differences of spermatozoa midpiece and tail abnormalities in the study groups were statistically insignificant. The use of polyvinylpyrrolidone as a cryoprotectant allows preserving 90 % of survived spermatozoa from oligoastenoteratozoospermia men after freeze/thawing. The set of spermatozoa head, neck and midpiece abnormalities is significantly lower after cryopreservation with polyvinylpyrrolidone compared with routine method with glycerol. Two-stage spermatozoa cryopreservation method with polyvinylpyrrolidone is promising for assisted reproductive technologies since spermatozoa can be used immediately after warming for oocyte fertilization without cryoprotectant removing step.
References
Horpinchenko I.І., Romaniuk M.H. (2016). Choloviche bezpliddia: etiolohiia, patohenez, diahnostyka ta suchasni metody likuvannia [Male infertility: etiology, pathogenesis, diagnostics and advanced methods of treatment]. Choloviche zdoroviia – Men’s Health, vol. 1 (56), pp. 8–17. Retrieved from http://nbuv.gov.ua/UJRN/Zdmu_2016_1_3 [in Ukrainian].
Petrushko М.P., Pavlovich Ye.V., Pinyaev V.І., Volkova N. (2016). Frahmentatsiia DNK ta protsesy perekysnoho okyslennia lipidiv u spermiiakh liudyny pry normo- ta patospermii [Processes of DNA fragmentation and peroxidation of lipid spermatozoa in humans under the normospermia and pathospermia]. Visnyk Lvivskoho universytetu. Seriia Biolohiia – Bulletin of Lviv University. Biology series, vol. 74 (97), pp. 97–103. Retrieved from http://nbuv.gov.ua/UJRN/VLNU_biol_2016_74_14 [in Ukrainian].
Petrushko М.P., Pavlovich Ye.V., Pinyaev V.І., Volkova N.A., Podyfaliy V.V. (2017). Apoptosis and processes of DNA fragmentation in native and cryopreserved human sperm cells at normo- and pathospermia. Cytology and Genetics, vol. 51 (4), pp. 278–281, DOI 10.3103/S0095452717040065.
Petrushko M.P. (2017). Suchasnyi stan problemy kriokonservuvannia reproduktyvnykh klityn ta embrioniv liudyny. Za materialamy naukovoi dopovidi na zasidanni Prezydii NAN Ukrainy 17 travnia 2017 roku [Сurrent state of cryopreservation of reproductive cells and embryos. According to the scientific report at the meeting of the Presidium of the NAS of Ukraine on May 17, 2017]. Visnyk NAN Ukrainy – Bulletin of the NAS of Ukraine, № 7, pp. 44–52, DOI 10.15407/visn2017.07.044 [in Ukrainian].
Di Santo M., Tarozzi N., Nadalini M., Borini A. (2012). Human sperm cryopreservation: update on techniques, effect on DNA integrity, and implications for ART. Adv. Urology, vol. 2012, article ID 854837, DOI 10.1155/2012/854837.
Best B. (2015). Cryoprotectant toxicity: facts, issues and questions. Rejuvenation Res., vol. 18 (5), pp. 422–436, DOI 10.1089/rej.2014.1656.
WHO laboratory manual for the examination and processing of human semen (5th ed.). (2010). World Health Organization, Department of Reproductive Health and Research, 287 p.
Afzelius B. (1959). Electron microscopy of the sperm tail results obtained with a new fixative. J. Bioph. Biochem. Cytol., vol. 5 (2), pp. 269–278, PMID 13654448, PMCID PMC2224653.
Setti A.S., de Almeida Ferreira Braga D.P., Vingris L., de Cassia Savio Figueira R., Iaconelli A.Jr., Borges E.Jr. (2014). The prevalence of sperm with large nuclear vacuoles is a prognostic tool in the prediction of ICSI success. J. Assist. Reprod. Genet., vol. 31 (3), pp. 307–312, DOI 10.1007/s10815-013-0157-0.
Gaspard O., Vanderzwalmen P., Wirleitner B., Ravet S., Wenders F., Eichel V., Mocková A. et al. (2018). Impact of high magnification sperm selection on neonatal outcomes: a retrospective study. J. Assist. Reprod. Genet., vol. 35 (6), pp. 1113–1121, DOI 10.1007/s10815-018-1167-8.
Pavlovych O.V., Hapon H.O., Yurchuk T.O., Riepin M.V., Marchenko L.M., Hovorukha T.P., Petrushko M.P. (2020). Ultrastrukturni ta funktsionalni kharakterystyky spermiiv liudyny pislia kriokonservuvannia metodom vitryfikatsii [Ultrastructural and functional characteristics of human spermatozoa after cryopreservation by vitrification]. Problemy kriobiolohii i kriomedytsyny – Problems of Cryobiology and Cryomedicine, vol. 30, № 1, pp. 24–33, doi.org/10.15407/cryo30.01.024.
Colaco S., Sakkas D. (2018). Paternal factors contributing to embryo quality. J. Assist. Reprod. Genet., vol. 35 (11), pp. 1953–1968, DOI 10.1007/s10815-018-1304-4.
Chang V., Heutte L., Petitjean C., Härtel S., Hitschfeld N. (2017). Automatic classification of human sperm head morphology. Comput. Biol. Med., vol. 84, pp. 205–216, DOI 10.1016/j.compbiomed.2017.03.029.
Shaker F., Monadjemi S.A., Alirezaie J., Naghsh-Nilchi A.R. (2017). A dictionary learning approach for human sperm heads classification. Comput. Biol. Med., vol. 91, pp. 181–190, DOI 10.1016/j.compbiomed.2017.10.009.
Cao X., Cui Y., Zhang X., Lou J., Zhou J., Wei R. (2017). The correlation of sperm morphology with unexplained recurrent spontaneous abortion: A systematic review and meta-analysis. Oncotarget, vol. 8, № 33, pp. 55646–55656, DOI 10.18632/oncotarget.17233.
Setti A.S., Braga D.P., Vingris L., Serzedello Th., de Cássia Sávio Figueira R., Iaconelli Jr.A., Borges Jr.E. (2014). Sperm morphological abnormalities visualised at high magnification predict embryonic development, from fertilisation to the blastocyst stage, in couples undergoing ICSI. J. Assist. Reprod. Genet., vol. 31 (11), pp. 1533–1539, DOI 10.1007/s10815-014-0326-9.
Ray P.F., Toure A., Metzler-Guillemain C., Mitchell M.J., Arnoult C., Coutton C. (2017). Genetic abnormalities leading to qualitative defects of sperm morphology or function. Clin. Genet., vol. 91 (2), pp. 217–232, DOI 10.1111/cge.12905.
Ozkavukcu S., Erdemli E., Isik A., Oztuna D., Karahuseyinoglu S. (2008). Effects of cryopreservation on sperm parameters and ultrastructural morphology of human spermatozoa. J. Assist. Reprod. Genet., vol. 25 (8), pp. 403–411, DOI 10.1007/s10815-008-9232-3.