Influence of the long-term postbiotics prescription on cardiometabolic risk factors in patients with coronary
PDF

Keywords

glycine
propionic acid
arrhythmia
cardiovascular disorders
dyslipidemia
inflammation

How to Cite

Melnychuk, I., & Kramarova, V. (2024). Influence of the long-term postbiotics prescription on cardiometabolic risk factors in patients with coronary . Medicine Today and Tomorrow, 93(2), 53-63. https://doi.org/10.35339/msz.2024.93.2.mkr

Abstract

The aim of this research was to evaluate the influence of long-term postbiotics prescription on CardioMetabolic Risk Factors (CMRF) in patients with Coronary Artery Disease (CAD) and Atrial Fibrillation (AF). 124 patients with CAD and AF paroxysm patients were divided by stratified randomization 1:3 into two groups: I (31 patients) and II (93 patients). Stratification was done according to the patient's age, gender, body mass index, and Total Cholesterol (TC). All patients received Standard Therapy (ST), according to the latest European Society of Cardiology guidelines: β-blockers, HMG-CoA-inhibitors (statins), anticoagulants, and, if necessary, angiotensin-converting enzyme inhibitors or angiotensin-II receptor blockers, calcium antagonists, diuretics, and/or antiarrhythmics. The I group patients’ received ST and postbiotic prescription during 6 months: rebamipide (2-(4-chlorobenzolamino)-3-[2(1H))-quinolon-4-yl] propionic acid) (100 mg 3 times a day) and glycine (100 mg 3 times a day). The II group patients received only ST. All patients were examined two times: during the initial investigation and after 6 months of treatment. After treatment in I group patients’ a significant decrease in TC (by 10.00%), low density lipoproteins (by 19.50%), Apolipoprotein B (by 12.92%), Interleucin-6 (by 12.40%), C-reactive protein (by 15.89%), TriMethylAmine (TMA) (by 19.32%), TriMethylAmine-N-Oxide (TMAO) (by 27.24%) was found (p<0.05) versus II group patients. After treatment all patients had significant improvement in CMRF (p<0.05): TC (by 44.01%), low density lipoproteins (by 52.90%), Interleucin-6 (by 27.52%), C-reactive protein (by 20.13%), TMA (by 14.66%), TMAO (by 33.91%), and significant increase in TMA/TMAO (by 23.45%), but I group got better values. In conclusion, long-term (6 months) postbiotics (propionic acid and glycine) prescription has a marked positive influence on CMRF in patients with CAD and AF.

Keywords: glycine, propionic acid, arrhythmia, cardiovascular disorders, dyslipidemia, inflammation.

https://doi.org/10.35339/msz.2024.93.2.mkr
PDF

References

Hindricks G, Potpara T, Dagres N, Arbelo E, Bax JJ, Blomstrom-Lundqvist C, et al.; ESC Scientific Document Group. 2020 ESC Guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS): The Task Force for the diagnosis and management of atrial fibrillation of the European Society of Cardiology (ESC) Developed with the special contribution of the European Heart Rhythm Association (EHRA) of the ESC. Eur Heart J. 2021;42(5):373-498. DOI: 10.1093/eurheartj/ehaa612. Erratum in: Eur Heart J. 2021;42(5):507. DOI: 10.1093/eurheartj/ehaa798. Erratum in: Eur Heart J. 2021 Feb 1;42(5):546-7. DOI: 10.1093/eurheartj/ehaa945. Erratum in: Eur Heart J. 2021 Oct 21;42(40):4194. DOI: 10.1093/eurheartj/ehab648. PMID: 32860505.

Knuuti J, Wijns W, Saraste A, Capodanno D, Barbato E, Funck-Brentano C, et al.; ESC Scientific Document Group. 2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes. Eur Heart J. 2020;41(3):407-77. DOI: 10.1093/eurheartj/ehz425. Erratum in: Eur Heart J. 2020 Nov 21;41(44):4242. DOI: 10.1093/eurheartj/ehz825. PMID: 31504439.

Li JJ, Liu HH, Li S. Landscape of cardiometabolic risk factors in Chinese population: a narrative review. Cardiovasc Diabetol. 2022;21(1):113. DOI: 10.1186/s12933-022-01551-3. PMID: 35729555.

Rahman MM, Islam F, -Or-Rashid MH, Mamun AA, Rahaman MS, Islam MM, et al. The Gut Microbiota (Microbiome) in Cardiovascular Disease and Its Therapeutic Regulation. Front Cell Infect Microbiol. 2022;12:903570. DOI: 10.3389/fcimb.2022.903570. PMID: 35795187.

Gawałko M, Agbaedeng TA, Saljic A, Muller DN, Wilck N, Schnabel R, et al. Gut microbiota, dysbiosis and atrial fibrillation. Arrhythmogenic mechanisms and potential clinical implications. Cardiovasc Res. 2022;118(11):2415-27. DOI: 10.1093/cvr/cvab292. PMID: 34550344.

Canyelles M, Borras C, Rotllan N, Tondo M, Escola-Gil JC, Blanco-Vaca F. Gut Microbiota-Derived TMAO: A Causal Factor Promoting Atherosclerotic Cardiovascular Disease? Int J Mol Sci. 2023;24(3):1940. DOI: 10.3390/ijms24031940. PMID: 36768264.

Nataraj BH, Ali SA, Behare PV, Yadav H. Postbiotics-parabiotics: the new horizons in microbial biotherapy and functional foods. Microb Cell Fact. 2020;19(1):168. DOI: 10.1186/s12934-020-01426-w. PMID: 32819443.

Tain YL, Hou CY, Chang-Chien GP, Lin S, Tzeng HT, Lee WC, et al. Reprogramming Effects of Postbiotic Butyrate and Propionate on Maternal High-Fructose Diet-Induced Offspring Hypertension. Nutrients. 2023;15(7):1682. DOI: 10.3390/nu15071682. PMID: 37049522.

Vrzackova N, Ruml T, Zelenka J. Postbiotics, Metabolic Signaling, and Cancer. Molecules. 2021;26(6):1528. DOI: 10.3390/molecules26061528. PMID: 33799580.

Rom O, Liu Y, Liu Z, Zhao Y, Wu J, Ghrayeb A, et al. Glycine-based treatment ameliorates NAFLD by modulating fatty acid oxidation, glutathione synthesis, and the gut microbiome. Sci Transl Med. 2020;12(572):eaaz2841. DOI: 10.1126/scitranslmed.aaz2841. PMID: 33268508.

Yang S, Zhao J, Liu X, Wang J, Gu M, Cai C, et al. Metabolomics Profiling Predicts Ventricular Arrhythmia in Patients with an Implantable Cardioverter Defibrillator. J Cardiovasc Transl Res. 2024;17(1):91-101. DOI: 10.1007/s12265-023-10413-6. PMID: 37556036.

Faizi N. Alvi Y. Biostatistics Manual for Health Research. Netherlands: Elsevier; 2023. 275 p. DOI: 10.1016/C2022-0-00374-3.

Minich DM, Brown BI. A Review of Dietary (Phyto)Nutrients for Glutathione Support. Nutrients. 2019;11(9):2073. DOI: 10.3390/nu11092073. PMID: 31484368.

Janeiro MH, Ramirez MJ, Milagro FI, Martínez JA, Solas M. Implication of Trimethylamine N-Oxide (TMAO) in Disease: Potential Biomarker or New Therapeutic Target. Nutrients. 2018;10(10):1398. DOI: 10.3390/nu10101398. PMID: 30275434.

Wu JH, Batist G. Glutathione and glutathione analogues; therapeutic potentials. Biochim Biophys Acta. 2013;1830(5):3350-3. DOI: 10.1016/j.bbagen.2012.11.016. PMID: 23201199.

Huang P, Huang Y, Lv B, Zhang H, Liu J, Yang G, et al. Endogenous Taurine Downregulation Is Required for Renal Injury in Salt-Sensitive Hypertensive Rats via CBS/H2S Inhibition. Oxid Med Cell Longev. 2021;2021:5530907. DOI: 10.1155/2021/5530907. PMID: 34484563.

Lurz E, Horne RG, Maattanen P, Wu RY, Botts SR, Li B, et al. Vitamin B12 Deficiency Alters the Gut Microbiota in a Murine Model of Colitis. Front Nutr. 2020;7:83. DOI: 10.3389/fnut.2020.00083. PMID: 32582756.

Lyzohub VH, Kramarova VN, Melnychuk IO. Role of intestinal microbiota changes in cardiovascular diseases pathogenesis. Zaporozhye Medical Journal. 2019;(5):672-8. DOI: 10.14739/2310-1210.2019.5.179462.

Krueger ES, Beales JL, Russon KB, Elison WS, Davis JR, Hansen JM, et al. Gut Metabolite Trimethylamine N-Oxide Protects INS-1 β-Cell and Rat Islet Function under Diabetic Glucolipotoxic Conditions. Biomolecules. 2021;11(12):1892. DOI: 10.3390/biom11121892. PMID: 34944536.

Vacca A, Schiattarella GG. From Gut to Heart: Role of Indole-3-Propionic Acid in HFpEF. Circ Res. 2024;134(4):390-2. DOI: 10.1161/CIRCRESAHA.123.323947. PMID: 38359099.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.