Modern strategies of targeted migraine therapy
PDF (Українська)

Keywords

calcitonin gene-related peptide
therapy
hepants
monoclonal antibodies
ditans

How to Cite

Litovchenko, T., Stepanchenko , K., & Tondiy , O. (2021). Modern strategies of targeted migraine therapy. Medicine Today and Tomorrow, 90(4), 13-23. https://doi.org/10.35339/msz.2021.90.4.lst

Abstract

Migraine is a chronic common neurological disorder. It is an extremely disabling and significantly reduces the quality of life of patients. Developments of the field of fundamental research and functional neuroimaging studies have improved the understanding of the pathophysiology of migraine. New specific drugs and methods of treatment have appeared. They significantly reduced the severity of headache attacks and the course of the disease. Therefore the aim of this work is to analyze and summarize the information of modern professional literature of the pathophysiology and treatment of migraine. Data on the neurophysiological features of the brain in migraine, the emergence of drugs with other therapeutic targets, such as glutamate, amylin, adrenomedullin, orexins, and pituitary adenylate cyclase-activating polypeptide are presented. Recommendations are given for emergency treatment of a migraine attack, depending on the severity of the attack, the degree of maladaptation of the patient, concomitant symptoms, concomitant diseases and the patient's response to treatment. Prophylactic treatment can be divided into first-, second- and third-line drugs, but the choice of drugs and the order of their use depend on local practical recommendations and availability in individual regions and cost. Efficacy, safety of new drugs for specific migraine therapy are discussed such as molecules targeting calcitonin gene-related peptide (hepants and monoclonal antibodies) and serotonin 5-HT1F receptor agonists (ditans). Diagnosis and clinical management of migraine worldwide remain suboptimal. A large number of studies lead to a deeper understanding of the neurobiology of this disorder, the search for new treatment methods that are more adapted to the needs of patients and fundamentally change the approach to the disease.

Keywords: calcitonin gene-related peptide, therapy, hepants, monoclonal antibodies, ditans.

https://doi.org/10.35339/msz.2021.90.4.lst
PDF (Українська)

References

Stovner LJ, Nichols E, Steiner TJ, Abd-Allah F, Abdelalim A, Al-Raddadi RM, et al. Global, regional, and national burden of migraine and tension-type headache, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2018;17(11):954-76. DOI: 10.1016/s1474-4422(18)30322-3. PMID: 30353868.

Iyengar S, Johnson KW, Ossipov MH, Aurora SK. CGRP and the trigeminal system in migraine. Headache. 2019;59(5):659-81. DOI: 10.1111/head.13529. PMID: 30982963.

Pozo-Rosich P, Storer R, Charbit A, Goadsby P. Periaqueductal gray calcitonin gene-related peptide modulates trigeminovascular neurons. Cephalalgia. 2015;35(14):1298-307. DOI: 10.1177/0333102415576723. PMID: 25792688.

Goadsby PJ, Holland PR. Pathophysiology of migraine. Neurol Clin. 2019;37(4):651-71. DOI: 10.1016/j.ncl.2019.07.008. PMID: 31563225.

Dubenko OY. Calcitonin gene-related peptide in migraine: the pathogenetic factor and therapeutic target (review). Int Neurol J. 2018;(2.96):38-44. DOI: 10.22141/2224-0713.2.96.2018.130481.

Schulte LH, Mehnert J, May A. Longitudinal neuroimaging over 30 days: temporal characteristics of migraine. Ann Neurol. 2020;87(4):646-51. DOI: 10.1002/ana.25697. PMID: 32031707.

Lee MJ, Park BY, Cho S, Kim ST, Park H, Chung CS. Increased connectivity of pain matrix in chronic migraine: a resting-state functional MRI study. J Headache Pain. 2019;20(1). DOI: 10.1186/s10194-019-0986-z. PMID: 30909865.

Gross EC, Lisicki M, Fischer D, Sándor PS, Schoenen J. The metabolic face of migraine — from pathophysiology to treatment. Nat Rev Neurol. 2019;15(11):627-43. DOI: 10.1038/s41582-019-0255-4. PMID: 31586135.

Noseda R, Borsook D, Burstein R. Neuropeptides and neurotransmitters that modulate thalamo-cortical pathways relevant to migraine headache. Headache. 2017;57:97-111. DOI: 10.1111/head.13083. PMID: 28485844.

Noseda R, Bernstein CA, Nir RR, Lee AJ, Fulton AB, Bertisch SM, Hovaguimian A, Cestari DM, Saavedra-Walker R, Borsook D, Doran BL, Buettner C, Burstein R. Migraine photophobia originating in cone-driven retinal pathways. Brain. 2016;139(7):1971-86. DOI: 10.1093/brain/aww119. PMID: 27190022.

Amin FM, Hougaard A, Magon S, Sprenger T, Wolfram F, Rostrup E, Ashina M. Altered thalamic connectivity during spontaneous attacks of migraine without aura: A resting-state fMRI study. Cephalalgia. 2017;38(7):1237-44. DOI: 10.1177/0333102417729113. PMID: 28853611.

Tu Y, Fu Z, Zeng F, Maleki N, Lan L, Li Z, et al. Abnormal thalamocortical network dynamics in migraine. Neurology. 2019;92(23):e2706-e2716. DOI: 10.1212/wnl.0000000000007607. PMID: 31076535.

Lim M, Jassar H, Kim DJ, Nascimento TD, DaSilva AF. Differential alteration of fMRI signal variability in the ascending trigeminal somatosensory and pain modulatory pathways in migraine. J Headache Pain. 2021;22(1). DOI: 10.1186/s10194-020-01210-6. PMID: 33413090.

Andreou AP, Shields KG, Goadsby PJ. GABA and valproate modulate trigeminovascular nociceptive transmission in the thalamus. Neurobiol Dis. 2010;37(2):314-23. DOI: 10.1016/j.nbd.2009.10.007. PMID: 19837163.

Puledda F, Shields K. Non-Pharmacological approaches for migraine. Neurotherapeutics. 2018;15(2):336-45. DOI: 10.1007/s13311-018-0623-6. PMID: 29616493.

Coppola G, Parisi V, Di Renzo A, Pierelli F. Cortical pain processing in migraine. J Neural Transm. 2019;127(4):551-66. DOI: 10.1007/s00702-019-02089-7. PMID: 31598777.

Dobrynina LA, Suslina AD, Gubanova MV, Belopasova AV, Sergeeva AN, Evers S, et al. White matter hyperintensity in different migraine subtypes. Sci Rep. 2021;11(1). DOI: 10.1038/s41598-021-90341-0. PMID: 34035361.

Freilinger T, Anttila V, de Vries B, Malik R, Kallela M, Terwindt GM, et al. Genome-wide association analysis identifies susceptibility loci for migraine without aura. Nat Genet. 2012;44(7):777-82. DOI: 10.1038/ng.2307. PMID: 22683712.

Younis S, Hougaard A, Vestergaard MB, Larsson HB, Ashina M. Migraine and magnetic resonance spectroscopy. Curr Opin Neurol. 2017;30(3):246-62. DOI: 10.1097/wco.0000000000000436. PMID: 28240609.

Moreno-Ajona D, Villar-Martínez MD, Goadsby PJ. Targets for migraine treatment: beyond calcitonin gene-related peptide. Current opinion in neurology. 2021;34(3):363-72. DOI: 10.1097/wco.0000000000000935. PMID: 33840777.

Houts CR, McGinley JS, Nishida TK, Buse DC, Wirth RJ, Dodick DW, et al. Systematic review of outcomes and endpoints in acute migraine clinical trials. Headache. 2021;61(2):263-75. DOI: 10.1111/head.14067. PMID: 33611818.

Eigenbrodt AK, Ashina H, Khan S, Diener HC, Mitsikostas DD, Sinclair AJ, et al. Diagnosis and management of migraine in ten steps. Nat Rev Neurol. 2021;17(8):501-14. DOI: 10.1038/s41582-021-00509-5. PMID: 34145431.

Shapiro RE, Hochstetler HM, Dennehy EB, Khanna R, Doty EG, Berg PH, Starling AJ. Lasmiditan for acute treatment of migraine in patients with cardiovascular risk factors: post-hoc analysis of pooled results from 2 randomized, double-blind, placebo-controlled, phase 3 trials. J Headache Pain. 2019;20(1). DOI: 10.1186/s10194-019-1044-6. PMID: 31464581.

Hutchinson S, Dodick DW, Treppendahl C, Bennett NL, Yu SY, Guo H, Trugman JM. Ubrogepant for the acute treatment of migraine: pooled efficacy, safety, and tolerability from the ACHIEVE I and ACHIEVE II phase 3 randomized trials. Neurol Ther. 2021;10(1):235-49. DOI: 10.1007/s40120-021-00234-7. PMID: 33608814.

Diener HC, Charles A, Goadsby PJ, Holle D. New therapeutic approaches for the prevention and treatment of migraine. Lancet Neurol. 2015;14(10):1010-22. DOI: 10.1016/s1474-4422(15)00198-2. PMID: 26376968.

Boinpally R, Jakate A, Butler M, Borbridge L, Periclou A. Single‐Dose pharmacokinetics and safety of atogepant in adults with hepatic impairment: results from an open‐label, phase 1 trial. Clin Pharmacol Drug Dev. 2021. DOI: 10.1002/cpdd.916. PMID: 33501783.

Min KC, Kraft WK, Bondiskey P, Colon‐Gonzalez F, Liu W, Xu J, et al. Atogepant is not associated with clinically meaningful alanine aminotransferase elevations in healthy adults. Clin Transl Sci. 2020. DOI: 10.1111/cts.12917. PMID: 33142014.

Croop R, Lipton RB, Kudrow D, Stock DA, Kamen L, Conway CM, et al. Oral rimegepant for preventive treatment of migraine: a phase 2/3, randomised, double-blind, placebo-controlled trial. Lancet. 2021;397(10268):51-60. DOI: 10.1016/s0140-6736(20)32544-7. PMID: 33338437.

Cohen F, Armand C, Lipton RB, Vollbracht S. Efficacy and tolerability of calcitonin gene–related peptide–targeted monoclonal antibody medications as add-on therapy to onabotulinumtoxina in patients with chronic migraine. Pain Med. 2021. DOI: 10.1093/pm/pnab093. PMID: 33693863.

Sanchez-Rodriguez C, Sierra A, Planchuelo-Gomez A, Martinez-Pias E, Guerrero AL, García-Azorin D. Real world effectiveness and tolerability of candesartan in the treatment of migraine: a retrospective cohort study. Sci Rep. 2021;11(1). DOI: 10.1038/s41598-021-83508-2. PMID: 33589682.

Liampas I, Siokas V, Brotis A, Vikelis M, Dardiotis E. Endogenous melatonin levels and therapeutic use of exogenous melatonin in migraine: systematic review and meta‐analysis. Headache. 2020;60(7):1273-99. DOI: 10.1111/head.13828. PMID: 32352572.