Анотація
Подано огляд літератури щодо актуальних питань вивчення кишкової мікробіоти за неалкогольної жирової хвороби печінки. Розглянуто нові аспекти даної проблеми та означено невирішені питання. Установлено, що незважаючи на велику кількість досліджень, присвячених визначенню механізмів розвитку жирової дистрофії печінки та її прогресуванню, остаточні патогенетичні ланки неалкогольної жирової хвороби печінки залишаються невизначеними та на додаток до відомої теорії «множинних ударів» порушення мікробного складу вмісту кишечника також розглядають як механізм, що призводить до розвитку даної патології. Результати досліджень свідчать про наявність потенційного зв’язку між бактеріальним складом кишкового вмісту та формуванням окремих форм неалкогольної жирової хвороби печінки через вплив на метаболізм нутрієнтів, метаболічних показників, імунологічних та інших механізмів.
Посилання
He X., Ji G., Jia W., Li H. (2016). Gut microbiota and nonalcoholic fatty liver disease: insights on mechanism and application of metabolomics. Int. J. Mol. Sci., vol. 17, pp. 300, DOI 10.3390/ijms17030300.
EASL-EASD-EASO (2016). EASL-EASD-EASO Clinical Practice Guidelines for the management of non-alcoholic fatty liver disease. J. Hepatol., vol. 64 (6), pp. 1388–1402, DOI 10.1016/j.jhep.2015.11.004.
Younossi Z.M., Koenig A.B., Abdelatif D., Fazel Y., Henry L., Wymer M. (2016). Global epidemiology of nonalcoholic fatty liver disease – Meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology, vol. 64 (1), pp. 73–84, DOI 10.1002/hep.28431.
Schwenger K.J.P., Fischer S.E., Jackson T.D., Okrainec A., Allard J.P. (2018). Non-alcoholic fatty liver disease in morbidly obese individuals undergoing bariatric surgery: prevalence and effect of the pre-bariatric very low calorie diet. Obes. Surg., vol. 28 (4), pp. 1109–1116, DOI 10.1007/s11695-017-2980-3.
Milić S., Lulić D., Štimac D. (2014). Non-alcoholic fatty liver disease and obesity: biochemical, metabolic and clinical presentations. World J. Gastroenterol., vol. 20, pp. 9330–9337, DOI 10.3748/wjg.v20.i28.9330.
Younossi Z.M., Blissett D., Blissett R., Henry L., Stepanova M., Younossi Y. et al. (2016). The economic and clinical burden of nonalcoholic fatty liver disease in the United States and Europe. Hepatology, vol. 64 (5), pp. 1577–1586, DOI 10.1002/hep.28785.
Hagstrom H., Nasr P., Ekstedt M., Hammar U., Stål P., Hultcrantz R., Kechagias S. (2017). Fibrosis stage but not NASH predicts mortality and time to development of severe liver disease in biopsy-proven NAFLD. J. Hepatol., vol. 67 (6), pp. 1265–1273, DOI 10.1016/j.jhep.2017.07.027.
Oliveira C.P., Stefano J.T., Carrilho F.J. (2017). Clinical patterns of hepatocellular carcinoma (HCC) in non-alcoholic fatty liver disease (NAFLD): a multicenter prospective study. Hepatobiliary Surg. and Nutr., vol. 6, pp. 350–352, DOI 10.21037/hbsn.2017.06.06.
Mikolasevic I., Filipec-Kanizaj T., Mijic M., Jakopcic I., Milic S., Hrstic I. et al. (2018). Nonalcoholic fatty liver disease and liver transplantation – Where do we stand? World J. Gastroenterol., vol. 24, pp. 1491–1506, DOI 10.3748/wjg.v24.i14.1491.
Wong R.J., Aguilar M., Cheung R., Perumpail R.B., Harrison S.A., Younossi Z.M., Ahmed A. (2015). Nonalcoholic steatohepatitis is the second leading etiology of liver disease among adults awaiting liver transplantation in the United States. Gastroenterology, vol. 148 (3), pp. 547–555, DOI 10.1053/j.gastro.2014.11.039.
Le Roy T., Llopis M., Lepage P., Bruneau A., Rabot S., Bevilacqua C. et al. (2013). Intestinal microbiota determines development of non-alcoholic fatty liver disease in mice. Gut., vol. 62, pp. 1787–1794, DOI 10.1136/gutjnl-2012-303816.
Diehl A.M., Day C. (2017). Cause, pathogenesis, and treatment of nonalcoholic steatohepatitis. N. Engl. J. Med., vol. 377, pp. 2063–2072, DOI 10.1056/NEJMra1503519.
Arab J.P., Karpen S.J., Dawson P.A., Arrese M., Trauner M. (2017). Bile acids and nonalcoholic fatty liver disease: molecular insights and therapeutic perspectives. Hepatology, vol. 65, pp. 350–362, DOI 10.1002/hep.28709.
Ridaura V.K., Faith J.J., Rey F.E., Cheng J., Duncan A.E., Kau A.L. et al. (2013). Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science, vol. 341 (6150), pp. 1241214, DOI 10.1126/science.1241214.
Koeth R.A., Wang Z., Levison B.S., Buffa J.A., Org E., Sheehy B.T. et al. (2013). Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat. Med., vol. 19, pp. 576–585, DOI 10.1038/nm.3145.
Levy M., Kolodziejczyk A.A., Thaiss C.A., Elinav E. (2017). Dysbiosis and the immune system. Nat. Rev. Immunol., vol. 17, pp. 219–232, DOI 10.1038/nri.2017.7.
Sharon G., Garg N., Debelius J., Knight R., Dorrestein P.C., Mazmanian S.K. (2014). Specialized metabolites from the microbiome in health and disease. Cell. Metab., vol. 20, pp. 719–730, DOI 10.1016/j.cmet.2014.10.016.
Miele L., Marrone G., Lauritano C., Cefalo C., Gasbarrini A., Day C., Grieco A. (2013). Gut-liver axis and microbiota in NAFLD: insight pathophysiology for novel therapeutic target. Curr. Pharm. Des., vol. 19 (29), pp. 5314–5324.
Mouzaki M., Comelli E.M., Arendt B.M., Bonengel J., Fung S.K., Fischer S.E. et al. (2013). Intestinal microbiota in patients with nonalcoholic fatty liver disease. Hepatology, vol. 58, pp. 120–127, DOI 10.1002/hep.26319.
Wang B., Jiang X., Cao M., Ge J., Bao Q., Tang L. et al. (2016). Altered fecal microbiota correlates with liver biochemistry in nonobese patients with non-alcoholic fatty liver disease. Sci. Rep., vol. 6, pp. 32002, DOI 10.1038/srep32002.
Zhu L., Liu W., Alkhouri R., Baker R.D., Gill S.R. (2013). Characterization of gut microbiomes in nonalcoholic steatohepatitis (NASH) patients: a connection between endogenous alcohol and NASH. Hepatology, vol. 57, pp. 601–609, DOI 10.1002/hep.26093.
Boursier J., Mueller O., Barret M., Machado M., Fizanne L., Araujo-Perez F. et al. (2016). The severity of nonalcoholic fatty liver disease is associated with gut dysbiosis and shift in the metabolic function of the gut microbiota. Hepatology, vol. 63 (3), pp. 764–775, DOI 10.1002/hep.28356.
Michail S., Lin M., Frey M.R., Fanter R., Paliy O., Hilbush B., Reo N.V. (2015). Altered gut microbial energy and metabolism in children with non-alcoholic fatty liver disease. FEMS Microbiol. Ecol., vol. 91 (2), pp. 1–9, DOI 10.1093/femsec/fiu002.
Loomba R., Seguritan V., Li W., Long T., Klitgord N., Bhatt A. et al. (2017). Gut microbiome-based metagenomic signature for non-invasive detection of advanced fibrosis in human nonalcoholic fatty liver disease. Cell Metab., vol. 25 (5), pp. 1054–1062, e1055, DOI 10.1016/j.cmet.2017.04.001.
Tang D.M., Kumar S. (2017). The association between Helicobacter pylori infection and nonalcoholic fatty liver disease. Curr. Gastroenterol. Rep., vol. 19 (2), pp. 5, DOI 10.1007/s11894-017-0545-1.
Dao M.C., Everard A., Aron-Wisnewsky J., Sokolovska N., Prifti E., Verger E.O. et al. (2016). Akkermansia muciniphila and improved metabolic health during a dietary intervention in obesity: relationship with gut microbiome richness and ecology. Gut., vol. 65, pp. 426–436, DOI 10.1136/gutjnl-2014-308778.
Plovier H., Everard A., Druart C., Depommier C., Van Hul M., Geurts L. et al. (2017). A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice. Nat. Med., vol. 23, pp. 107–113, DOI 10.1038/nm.4236.
Spencer M.D., Hamp T.J., Reid R.W., Fischer L.M., Zeisel S.H., Fodor A.A. (2011). Association between composition of the human gastrointestinal microbiome and development of fatty liver with choline deficiency. Gastroenterology, vol. 140 (3), pp. 976–986, DOI 10.1053/j.gastro.2010.11.049.
Gangarapu V., Ince A.T., Baysal B., Kayar Y., Kılıç U., Gök Ö. et al. (2015). Efficacy of rifaximin on circulating endotoxins and cytokines in patients with nonalcoholic fatty liver disease. Eur. J. Gastroenterol. Hepatol., vol. 27, pp. 840–845, DOI 10.1097/meg.0000000000000348.
Madrid A.M., Hurtado C., Venegas M., Cumsille F., Defilippi C. (2001). Long-term treatment with cisapride and antibiotics in liver cirrhosis: effect on small intestinal motility, bacterial overgrowth, and liver function. Am. J. Gastroenterol., vol. 96 (4), pp. 1251–1255, DOI 10.1111/j.1572-0241.2001.03636.x.
Zmora N., Zilberman-Schapira G., Suez J., Mor U., Dori-Bachash M., Bashiardes S. et al. (2018). Personalized gut mucosal colonization resistance to empiric probiotics is associated with unique host and microbiome features. Cell, vol. 174 (6), pp. 1388–1405, e1321, DOI 10.1016/j.cell.2018.08.041.